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An integral equation is obtained which describes the steady-state temperature field in a semi-infinite body 
with internal cylindrical heat sources (for cylinders of an arbitrary shape). For practical calculations a sim- 
plified equation is obtained by replacing the integral by a sum of a finite number of terms. The equations 
were used by the author to develop new methods of calculating the temperature in disc and drum rotors of 
heat turbines cooled by blowing-off the working fluid through distributed slots. 

Consider an infinite plane with infinite rows of identical line sources and line sinks of constant density q. Let the 
distance between the rows be 2h0, let the spacing of the sources (sinks) in a row be S (Fig. 1), and let the temperatures 
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Fig. 1. Semi-infinite solid with internal cyl-  
indrical heat sources. 

of the sources and sinks be + ,o and - % respectively. Assume that the 
lines are the bases of open cylindrical surfaces, whose generating lines 
are parallel to each other. The equation of each line, v = f (u), and 
its length l are given. The thermal conductivity of the solid k is as- 
sttrned to be constant. Let the isotherm which coincides with the line 
of symmetry between the rows of sources be tB, let the x axis coincide 
with that isotherm, and let the y axis pass through a source-sink pair 
(Fig. 1). 

Under these conditions, the steady-state temperature distribu- 
tion in the sotid is given by the heat-conduction equation 

o~ t (x, v) 0 2 t (x, v) 
+ = 0. (1) 
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Summing up, according to [I], the temperature fields due to line 
line elements dl (point sources and sinks) at an arbitrary point 
M (x, y) (y > 0), we obtain 

dQ = qdl, 

d____O_Q dO = d ( tB- -  t) = A, 
4~k 

ch  (2~/S) (y + v) - -  cos  (2re~S) (x -- u) 
A =  In 

ch (2~/S) ( y - -  v) - -  cos ( 2~/S) ( x - -  u) 

Integration along the length of the line yields 

q ;Adl .  0 = t B - - t =  4~rk 

l 

(2) 

Equation (2) can be used to calculate the temperature field in a semi-infinite solid with internal cylindrical heat 
sources (or channels with given surface temperature), whose bases are identical isothermal contour lines, closed around 
the source lines (Fig. 1). By changing the shape of the source line, it is possible to obtain arbitrary channel profiles. 

Consider the cooling of a semi-infinite solid by a system of such channels (the region y > 0 in Fig. 1). Let there be 
given the surface temperature t B of the solid and two points (1 anck 2) on the to isotherm (boundary conditions of the first 
kind). Assume that t B > to (i. e . ,  assume the existence of sources). In order t o  assure that the to isotherm is a closed 
curve and encloses the sink line, let the points 1 and 2 be given on a vertical straight line (e. g. ,  the y axis) above and 
below the sink line, respectively. 

Rewriting equation (2) in relative units, we obtain 

-[= t - - t o  

t B -  to 
- -  = 1 2f~l Adl, (3) 

l 
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where ~ = 2~.). (t B -  t0)/Q, (2 ---- qI. 

Solution (3) satisfies equation (1) and the boundary condition at the boundary of the solid: at y = 0~" = t or t = t B. 

The position of the sink line h0 and its total strength Q are determined from the solution of the system of two equa- 
tions obtained by applying the condition'~ = 0 to the given points 1 and 2. 

Consider the case when the line sink is a segment of a horizontal straight line with length l. Assuming that the y 
axis passes through the center of the segment (Fig. 2), we obtain 

+I/2 
-- 1 ~ ch (2=/8) (y nu ho) - -  cos (2~r/S) (x - -  l~) du. (3a) 
t = I 2Rl In ch (2=/S ) (~ /~ho)  - -  cos (2=/S) (x - -  u) 

- -  ~ l / 2  " ' 

Integrals of type (2), (3a) cannot be evaluated by elementary formulas. For practical calculations it is convenient 
to express these in finite-difference form according to the trapezoidal formula. The system of equations for h0 andS(Q) 
can then be solved by the method of successive approximations. 

Such an approximate solution was calculated for the case (Yi + yz)/S = 0.6, (Yz - yl)/S = 0.4, 1/S = 0.5 and n = 
= 4. The values of h0 and ~ were found from this solution, and the to isotherm was calculated point by point (Fig. 2). k 
can be seen that the to isotherm has two discontinuities, which is due to the fact that equation (Sa) has been expressed 
in finite-difference form in which segments of the line sink were replaced by point sinks. 

The dash line represents a possible contour of the isotherm obtained from an exact sointiou. Its shape is close to a 
triangular channel. When the points 1 and 2 approach each other, the contour of the isotherm approaches the shape of a 
narrow plane slot. Therefore equation (3a) can be used for the approximate solution of the problem of cooling (heating) 
of a solid by a system of plane-slot channels. 
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Fig. 2. The to isotherm for a constant-density 
sink line represented by a segment of a hori- 

zontal straight line. 

Equations, analogous to (3a), can be written down for sink 
segments represented by the equation of a circIe, eilipse, para- 
bola, hyperbola, etc. By ~pecifying in this manner the shape of 
a sink line of constant density, one can obtain many difference 
channel contours. Thus, equation (3) can be used to solve a 
broad class of problems. 

However, in all these cases the equations of the cooling cont- 
tour are determined by the given shape of the sink line and can be 
quite different from the required cooling channel profile. In the gener- 
al case, in order to make the contour of the t0 isotherm coincide with a 
given profile, it is necessary to choose appropriately not only the shape 
of the sink line, but also the density distribution along this line. 
Thus, for channels with arbitrarly specified profiie we can write 

t B -  t = S q (u,4=>.v) 

l 

X iln ch (2~/S) [ ! / + v  (u) ] - -cos  (2~/S)(x--U!dl .  
ch (2=/S) [ y - - v  (u) l - -cos  ( 2~/8) ( x - -u )  

(4) 

Clearly, the functions v(u) and q(u, v) are determined, in accordance with the condition t = to, by the whole con- 
tour. This requires the solution of a system of integral equations with unknown limits of integration, which leads to 
considerable difficulties. 

However, for practical calculations it is sufficient to express the generalized equation (4) in finite-difference form, 
by replacing the continuous sink distribution by point sinks, namely 

m 

E 1 In = 1 

i ~ l  

T =  t - - t o  __ 

t B -  t e 

c h ( g  4- ho~) 2rUS - -  cos (x - -  xox) 2=/8 

ch ( ! / - -h0i )  2=/S - -  cos (x - -  Xoi) 2~/S 

(5) 

where ~i ---- 2=). (t r - -  to)/Qi. 
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In a more general  case there can be several  rows of channels, with different profiles and different spacing. In that 

case addi t ional  sums would appear in equation (5). 

In order to determine the sink parameters  (x0i, h0i, Ri)  one must set up a system of 3m equations obtained by ap-  
plying the condition }-= 0 (t = to) at am points of the given profile.  By specifying the number of sinks one can use an 
arbitrary number of points on the given profile and can solve the problem with arbitrary accuracy.  During the solution 
of the problem one should remember  that the hea ts inks  should l ie  inside the region enclosed by the given profile.  

In most prac t ica l  problems the solution can be simplif ied.  Thus, for example,  in the case of profiles symmetr ic  
with respect to the y axis the number of unknowns is halved.  The number of unknowns can also be reduced by specifying 
the abscissas of some sinks. In the case of circular  channels, when the radii  are considerable smaller  than hi and S, one 
can assume x0i = xi, h0i = hi (the sink coincides with center of the circle) ,  and in that case the problem is reduced to 
the solution of a system of l inear a lgebra ic  equations with unknown z i = 1/-R i. 

Using equation (5), one can easily obtain an approximate solution for circular  channels of equal depth and uniform 
spacing, assuming m = 1. The parameters h0 and R are in this case determined from the relations 

2r" ho arch(ch--~- h/ch 2r~ ) ( hi ) r R a rch  sh 2:: sh 2 ~  
S S S S 

This solution is satisfactory when r/S ~ 0. I. 

(6) 

In another ar t ic le  [2] the author has shown some important characterist ics of the temperature field described by (5), 
which were used to derive equations for the calculat ion of temperature  in plane walls with internal cyl indr ical  heat  
sources. 

In pract ice  one often has to apply boundary conditions of the third kind, when the temperatures and heat- transfer  
coefficients of the media  adjoining the surfaces of the solid and flowing inside the channels are given. For the approxi-  
mate  solution of such problems it is recommended to use the method of an addit ional  wall,  the essence of which is the 
replacement  of external  thermal  resistances by internal resistances. This reduces the problem to a problem with bound- 

ary conditions of the first kind. Specif ic  examples of the appl ica t ion  of this method are given in [2, 3, 4]. 

The tempera ture - f ie ld  equations obtained here were used by the author to develop methods for calculat ing the 
temperature  in disc and drum rotors of heat  turbines cooled by injecting* the working fluid through distributed slots. 
The results of calculat ions based on this method were in good agreement  with exper imental  data obtained on a thermat  
model  of the rotor and by e lec t r ic -ana log  methods [3, 4]. 

NOTATION 

Q and g - sink strength and dimensionless thermal  resistance, respectively,  of unit length of a channel whose con- 
tour coincides with the isotherm to (}- = 0); n - even number of equal intervals, into which a sink l ine is divided; q (u, v) 
- sink density distribution along the line sink; v = v (u) - equation of the sink line; m, x0i, h0i - number and coordi-  

nates of point sinks in a contour; Ri - dimensionless thermal  resistance of point sinks, referred to the isotherms t B and 
to; Qi - sink strength; +Q and --Q - strengths of l ine sources and sinks, respectively;  h - depth of  centers of  a row of  c i r -  
cular channels; r - radius of circular channel; 3, 4 - open cyl indr ical  heat  sources with surface temperatures _oo and +% 
respectively;  5, 6 - closed cyl indr ical  heat  sources with surface temperatures to and t~ (t~ > t B > t0), respectively.  
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*Studies of  this problem indicate  that this cooling method makes it possible to construct modem high-capac i ty ,  h igh-  

temperature steam and gas turbines mainly  from well-known and re la t ive ly  cheap per l i t ie  steels. 
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